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1. Introduction
The increasing prevalence of fluorine-containing, 
small molecule pharmaceuticals is a well justified 
phenomenon capitalizing on the distinctive steric, 
electrostatic, and chemical properties of fluorine 
[1]. Despite well founded health and environmental 
concerns [2], the integration of fluorine into 
bioactive molecules shows no signs of abating [3]. 
Fluorine-containing drugs are literally saving lives 
and contributing significantly to the standard of 
well-being in Western countries [4]. Nevertheless, 
projecting future trends, it is plausible to anticipate 
that well established substituents in drug design 

such as the trifluoromethyl 1 and pentafluoroethyl 
2 groups (Figure 1) which degrade into persistent 
TFA and pentafluoropropionic acid, respectively [5], 
will likely face increased regulatory scrutiny [6]. 
On the other hand, fluorinated substituents such as 
tetrafluoroethylene 3–5 [7], which may biodegrade to 
fluoride and thus align with evolving environmental 
legislation, are likely to encounter more favorable 
regulatory prospects.
The properties and bioactivity of tetrafluoroethylene-
containing compounds are generally not well 
known apart from reports on the applications of 
tetrafluoroethylene moieties of type 6 and 7 (Figure 
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2) in the design of liquid crystals and fluorescent 
materials [8]. Additionally, compounds 8 and 9 

have been reported to exhibit some insecticidal and 
herbicidal activity, respectively [9].
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Figure 1. Common fluorine-containing moieties: trifluoromethyl 1, pentafluoroethyl 2, tetrafluoroethyl 3, acyclic tetrafluoroethylene 

4, and cyclic tetrafluoroethylene 5 groups.

O

N
H

O

N
H

F

F

OMe
O

Cl
F F

F F

8

ON
H

O

N
Me

Me

H
F F

F F9

F F

F F

F F
F
F

6

7

Figure 2. Tetrafluoroethylene-containing compounds 6–9 possessing useful properties.
Synthetic approaches for preparing compounds with 
a tetrafluoroethylene moiety are quite scarce, limited 
primarily to the elaboration of the double bond in 
substrates of type 10 or the addition of Li–CF2CF2– 
species to C=O or C=N bonds (Scheme 1).
Sharpless dihydroxylation of the double bond in 
substrates 10, conducted under standard conditions, 
affords diols 11 with excellent enantioselectivity, 
albeit only in moderate yields [10]. Similarly, 
enantioselective conjugate addition of aryl boronic 
acid to the C=C bond in 10 in the presence of a rhodium/
BINAP catalyst provides compounds 12 also with 

high enantioselectivity, but again albeit only in 57% 
yield [11]. It should be noted that low-to-moderate 
chemical yields coupled with high-to-excellent 
enantioselectivities can often be an indication of 
erroneously recorded stereochemical outcomes due 
to workers’ oversight of the self-disproportionation 
of enantiomers (SDE) phenomenon [12]. Thus, unless 
SDE tests [13] are conducted, as required by some 
journals [14], the true enantioselectivity of these 
reactions remains unconfirmed and other workers 
attempting to replicate such results should be aware 
of this fact.
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Scheme 1. Examples of asymmetric synthesis of tetrafluoroethylene compounds.
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Diastereoselective addition reactions of Li–CF2CF2– 
species to the C=O and C=N bonds of chiral 
derivatives 13 are conducted under very restrictive 
and operationally inconvenient conditions and only 
yield addition products 14 with moderate yields (61–
76%) and variable diastereoselectivity [15].
Considering the high potential interest in 
tetrafluoroethylene-containing derivatives and the 
rather limited synthetic access to these compounds, 
it was exciting to see the report from Prof. Tsutomu 
Konno’s laboratory on the asymmetric synthesis of 
tetrafluoroethylenated amines via the [1,3]-proton 
shift reaction [16]. In this brief review, we highlight 
the practical significance and methodological 

advances of the reported results while at the same 
time noting potential inaccuracies in the reported 
enantioselectivities due to the SDE phenomenon.
1.1 [1,3]-Proton shift reaction
The [1,3]-proton shift reaction refers to the 
azomethine–azomethine isomerization via base-
catalyzed [1,3]-proton transfer, as seen in the 
transformation of 16 to 17 (Scheme 2) [17]. This 
isomerization is a crucial step in the broader, overall 
biomimetic reductive amination [18] of various 
carbonyl compounds 15 to amines 18 and amino 
acids [19].
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Scheme 2. Azomethine–azomethine isomerization via base-catalyzed [1,3]-proton transfer as a key step in biomimetic reductive 
amination.

Of particular interest is the asymmetric version of this 
reaction, which can be conducted using a chiral base 
[20] – and is thus enantioselectively catalyzed – or a 
chiral amine to form the requisite Schiff base 16 [21] 
– and thus utilizes a stoichiometric amount of chiral 
auxiliary – starting from ketone 15. Base-catalyzed, 
azomethine–azomethine isomerization [22] is a 
reversible process and therefore it is only of synthetic 
value when the equilibrium between 16 and 17 is 
strongly shifted towards 17, e.g. when 17 is present in 
greater than 95%, to ultimately lead to the amine 18. 
Consequently, all of the parameters such as reaction 
conditions [23] and the nature of the substituents [24] 
play a critical role in the overall synthetic success. 
In this regard, the recent reports from Prof. Konno’s 

laboratory on the use of tetrafluoroethylene-containing 
substrates represent a significant methodological 
advancement and represents a convenient access route 
to the corresponding amino compounds possessing 
valuable properties and potential bioactivity [16].

2. Asymmetric Synthesis of 
Tetrafluoroethylenated Amines via 
[1,3]-Proton Shift
Starting tetrafluoroethylenated ketones 19 (Scheme 
3) were prepared in a single step using commercially 
available 3,3,4,4-tetrafluoro-1-butene (20). These 
were then converted to organometallic species 21 
followed by reaction with acyl chloride to afford the 
target ketones 20 [25].
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Scheme 3. Synthesis of starting tetrafluoroethylenated ketones 19.

The reaction of ketones 19 with enantiomerically 
pure 1-phenylethylamine (Scheme 4) were conducted 
under mild conditions at ambient temperature in 

diethyl ether using TiCl4 as a dehydrating agent [26]. 
The procedure yielded the corresponding imines 22 in 
moderate-to-excellent isolated yields (60–96%).
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The [1,3]-proton shift reactions of the 
tetrafluoroethylenated imines 22 revealed rather 
unexpected results. The azomethine–azomethine 
isomerizations conducted in the presence of a strong 
base such as DBU gave rise to three major products 

23–25. Product (R)-23 was the intended and expected 
compound while the dehydrofluorinated derivative 24 
could be anticipated based on literature results [17, 20, 
21, 23, 24]. However, the double dehydrofluorinated 
entity 25 was an entirely unexpected surprise.
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Scheme 4. [1,3]-Proton shift reaction of imines 22 with the resulting relative amounts of the products 23–25.
It was demonstrated that the reaction solvent and the 
amount of DBU can profoundly affect the relative 
ratio of products 23–25. Analysis of the reaction 
outcomes conducted under various conditions led 
to the conclusion that imine 23 is the first reaction 
product, giving rise to intermediate triene 24 via the 
reaction anionic intermediate 26. This intermediate 

then undergoes base-catalyzed cyclization to produce 
25 via the reaction anionic intermediate 27. The 
cyclic product 25 is likely the final and only product if 
the reaction is allowed to proceed to completion. The 
step-by-step sequence of the corresponding reactions 
and plausible mechanistic details are illustrated in 
Scheme 5.
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Scheme 5. Mechanism of dehydrofluorinated product formation.
The [1,3]-proton shift products 23 (Scheme 6) were 
treated with 2N HCl aqueous solution in diethyl 
ether for 2 hours followed by neutralization with 2N 
NaOH aqueous solution to yield the corresponding 
free amines 28. Subsequent treatment of the amines 

28 with CbzCl and pyridine in dichloromethane 
afforded the corresponding protected derivatives 29 
which were isolated in high enantiomeric purity and 
in reasonable yields.
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The SDE is a ubiquitous, general phenomenon that has 
been observed and reported for practically all types of 
chiral compounds under all known physicochemical 
phase transitions, including achiral gas 
chromatography [27]. Typical laboratory purification 
methods such as achiral column chromatography 
[28] and sublimation [29] are particularly prone to 
the SDE phenomenon. Moreover, it has been well 
established that fluorine is one of the most forceful 
SDE-phoric groups as a large magnitude of the SDE 
is often observed for fluorinated compounds when a 
fluorine atom(s) is(are) located in close proximity to 
the stereogenic center [30]. Therefore, it should be 
considered an unfortunate oversight by the authors 
[16] that they did not perform the now requisite SDE 
tests [14] relative to their applied purification methods 
to confirm and validate the reported stereochemical 
outcome of this novel and fascinating [1,3]-proton 
shift reaction.

3. Conclusion
As reported by Prof. Konno’s group, the 
[1,3]-proton shift reaction can be successfully 
extended to the asymmetric synthesis of amines 
containing a tetrafluoroethylene moiety. However, 
the corresponding DBU-catalyzed, azomethine–
azomethine isomerization of the tetrafluoroethylene-
containing imines is complicated by sequential 
dehydrofluorination leading to the formation of 
unsaturated byproducts. But by and large the target 
tetrafluoroethylene imines can be isolated with high 
enantiomeric purity in moderate yields. However, 
the true enantioselectivity of these reactions remains 
unconfirmed in the absence of SDE tests due to the 
potential for the SDE phenomenon to be in effect 
during routine purification steps and other workers 
attempting to replicate the reported results should 
be aware of this oversight. Nevertheless, the overall 
procedure provides a simple access to a previously 
unknown type of compound with potentially 
interesting biological activity.
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